Project Title	Funding	Institution	
Functional study of synaptic scaffold protein SHANK3 and autism mouse model	\$150,000	Duke University	
The role of SHANK3 in autism spectrum disorders	\$0	Mount Sinai School of Medicine	
Using zebrafish and chemical screening to define function of autism genes	\$0	Whitehead Institute for Biomedical Research	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$315,375	University of California, San Francisco	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$377,663	Salk Institute for Biological Studies	
Characterization of synaptic and neural circuitry dysfunction underlying ASD-like behaviors using a novel genetic mouse model	\$0	Duke University	
Quantitative analysis of effect of autism-related genes on behavioral regulation	\$102,000	University of California, San Francisco	
Genomic imbalances at the 22q11 locus and predisposition to autism	\$0	Columbia University	
Shank3 mutant characterization in vivo	\$0	University of Texas Southwestern Medical Center	
Investigating the effects of chromosome 22q11.2 deletions	\$300,000	Columbia University	
Roles of oxytocin and vasopressin in brain	\$1,990,068	National Institutes of Health	
Studies of genetic and metabolic disorders, autism and premature aging	\$1,667,480	National Institutes of Health	
Mechanisms of stress-enhanced aversive conditioning	\$381,250	Northwestern University	
Patient iPS cells with copy number variations to model neuropsychiatric disorders	\$336,050	The Hospital for Sick Children	
Cerebellar signaling in mouse models of autism	\$125,000	Northwestern University	
Behavioral and physiological consequences of disrupted Met signaling	\$400,000	University of Southern California	
Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$89,999	Weizmann Institute of Science	
Effects of chronic intranasal oxytocin	\$568,507	University of California, Davis	
Characterization of the schizophrenia-associated 3q29 deletion in mouse	\$404,198	Emory University	
Exploring the neuronal phenotype of autism spectrum disorders using induced pluripotent stem cells	\$366,529	Stanford University	
Synaptic pathophysiology of 16p11.2 model mice	\$125,000	Massachusetts Institute of Technology	
Neurobiological signatures of social dysfunction and repetitive behavior	\$395,672	Vanderbilt University Medical Center	
Novel genetic models of autism	\$337,875	University of Texas Southwestern Medical Center	
16p11.2: defining the gene(s) responsible	\$350,000	Cold Spring Harbor Laboratory	
Dissecting the circuitry basis of autistic-like behaviors in mice	\$350,000	Massachusetts Institute of Technology	
The genetic control of social behavior in the mouse	\$342,540	University Of Hawai'i at Manoa	
Role of RAS/RAF/ERK pathway in pathogenesis and treatment of autism	\$0	New York State Institute for Basic Research in Developmental Disabilities	
Cell type-specific profiling for autism spectrum disorders	\$120,000	Columbia University	
Control of synaptic protein synthesis in the pathogenesis and therapy of autism	\$294,937	Massachusetts General Hospital	
Novel therapeutic targets to treat social behavior deficits in autism and related disorders	\$0	University of Texas Health Science Center at San Antonio	

Project Title	Funding	Institution	
Serotonin, autism, and investigating cell types for CNS disorders	\$246,794	Washington University in St. Louis	
Animal model of speech sound processing in autism	\$283,249	University of Texas at Dallas	
Identifying therapeutic targets for autism using Shank3-deficient mice	\$484,667	Mount Sinai School of Medicine	
Insight into MeCP2 function raises therapeutic possibilities for Rett syndrome	\$290,087	University of California, San Francisco	
Animal models Of neuropsychiatric disorders	\$974,415	National Institutes of Health	
Neural and cognitive mechanisms of autism	\$0	Massachusetts Institute of Technology	
Neuroligin function in vivo: Implications for autism and mental retardation	\$388,575	University of Texas Southwestern Medical Center	
Striatal synaptic abnormalities in models of autism	\$397,396	University of Texas Southwestern Medical Center	
Autism iPSCs for studying function and dysfunction in human neural development	\$460,152	Scripps Research Institute	
Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$0	Massachusetts Institute of Technology	
Examination of the mGluR-mTOR pathway for the identification of potential therapeutic targets to treat fragile X	\$0	University of Pennsylvania	
Impact of an autism associated mutation in DACT1 on brain development and behavior	\$45,000	University of California, San Francisco	
A mouse model for human chromosome 7q11.23 duplication syndrome	\$0	University of Toronto	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina at Chapel Hill	
Novel probiotic therapies for autism	\$0	California Institute of Technology	
Oxytocin receptors and social behavior	\$440,363	Emory University	
Evaluating hyperserotonemia as a biomarker of sensory dysfunction in autism spectrum disorder	\$28,600	Vanderbilt University	
Modeling the serotonin contribution to autism spectrum disorders	\$236,532	Vanderbilt University Medical Center	
Investigating the role of CNTNAP2 gene in vocal learning in mutant songbirds	\$249,063	University of Massachusetts Medical School	
The role of glutamate receptor intereacting proteins in autism	\$312,500	Johns Hopkins University School of Medicine	
Dissecting the neural control of social attachment	\$764,775	University of California, San Francisco	
Using induced pluripotent stem cells to identify cellular phenotypes of autism	\$792,000	Stanford University	
Transgenic and knockout approaches to study protocadherin function	\$228,750	The Ohio State University	
Studying the neural development of patient-derived stem cells	\$156,250	Johns Hopkins University School of Medicine	
The genetic and neuroanatomical origin of social behavior	\$391,250	Baylor College of Medicine	

Project Title	Funding	Institution	
Role of astrocytic glutamate transporter GLT1 in fragile X	\$40,000	Tufts University	
Deficits in tonic inhibition and the pathology of autism spectrum disorders	\$156,250	Tufts University	
Temporally controlled genetic rescue of Shank3 autism model	\$60,000	University of Texas Southwestern Medical Center	
Role of cadherin-8 in the assembly of prefrontal cortical circuits	\$155,940	Mount Sinai School of Medicine	
16p11.2 deletion mice: autism-relevant phenotypes and treatment discovery	\$200,000	University of California, Davis	
Effect of abnormal calcium influx on social behavior in autism	\$156,250	University of California, San Francisco	
Tooth pulp as a source for neuronal precursor cells to study neurogenetic disorders	\$187,344	University of Tennessee Health Science Center	
Understanding copy number variants associated with autism	\$125,000	Duke University Medical Center	
16p11.2 deletion mice: Autism-relevant phenotypes and treatment discovery	\$200,000	Stanford University	
Integrative system biology of iPSC-induced neurons for identifying novel drug targets	\$55,200	Baylor College of Medicine	
Identifying high-impact therapeutic targets for autism spectrum disorders using rat models	\$137,173	Mount Sinai School of Medicine	
Novel approaches to enhance social cognition by stimulating central oxytocin release	\$149,852	Emory University	
PsychoGenics Inc.	\$147,925	PsychoGenics Inc.	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 2	\$79,584	University of California, Los Angeles	
Role of UBE3A in neocortical plasticity and function	\$77,686	University of North Carolina at Chapel Hill	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$79,525	Universidad Miguel Hernandez	
Perinatal choline supplementation as a treatment for autism	\$62,500	Boston University	
Small-molecule compounds for treating autism spectrum disorders	\$350,000	University of North Carolina at Chapel Hill	
Identifying therapeutic targets for autism using Shank3-deficient mice (supplement)	\$121,077	Mount Sinai School of Medicine	
A probiotic therapy for autism	\$62,500	California Institute of Technology	
Cellular and molecular pathways of cortical afferentation in autism spectrum disorders	\$0	University of Geneva	
Integrated approach to the neurobiology of autism spectrum disorders	\$0	Yale University	
OCT blockade to restore sociability in 5-HT transporter knock-out mice	\$74,250	University of Texas Health Science Center at San Antonio	
Rat knockout models of ASD	\$100,441	Baylor College of Medicine	
Role of a novel Wnt pathway in autism spectrum disorders	\$300,000	University of California, San Francisco	
Cellular and genetic correlates of increased head size in autism spectrum disorder	\$393,455	Yale University	
Mechanism and treatment of ASD related behavior in the Cntnap2 knockout mouse model	\$58,000	University of California, Los Angeles	
Effects of oxytocin receptor agonists in mouse models of autism spectrum disorder phenotypes	\$48,500	University of North Carolina at Chapel Hill	

Project Title	Funding	Institution	
Using induced-pluripotent stem cells to study Phelan McDermid Syndrome	\$40,000	Stanford University School of Medicine	
Training in translational social neuroscience	\$98,163	Emory University	
Developing a new model system to study mechanisms of attention control	\$0	Stanford University	
Establishing next-generation tools for quantitative behavioral phenotyping	\$60,000	Harvard Medical School	
Novel genetic models of autism (supplement)	\$99,773	University of Texas Southwestern Medical Center	
Functional analysis of rare variants in genes associated with autism	\$146,625	Yale University	
Preclinical therapeutic target validation of glutamate receptors in Shank3 models of autism	\$56,900	University of Texas Southwestern Medical Center	
Adverse prenatal environment and altered social and anxiety-related behaviors	\$45,000	University of Pennsylvania	
Synaptic and circuitry mechanisms of repetitive behaviors in autism	\$47,041	Massachusetts Institute of Technology	